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APte rrlative approaches to  cr ime prediction ( c a u s a l ,  yuasi- 

causal, associative, extrapoIative,  and pattern- recognition models) 

are disccssed, as is the  cn\-ironnient witliin which  predictions were 

desirt-3 for the imnrndiak appl icat ion.  

tinic- series (extrapolative) ~ T M X ~ P ~ S  to prDduce the desired predictions. 

The characterist ics of the  data an2 the pi+oePdure used to choose 

eqtistions for the extrapolations are discusscd. 

differen: functional forms (constant, quadratic, and exponential 

forms) a21d s f  different para.mdter estimation techniques (multiple 
regress ion a d  muTtiple expnnential  smcmthing) a m  curnpa~ed, and 
thc qual i ty  of the rzsuktant preciictions i s  a s s e s s e d .  

T h e  dec is ion  was made to use 

The usefulness of 

Appendixes present a diecussion of the different a. 
to cr ime prediction t h a t  \?'ere ccne;  e ~ e d ,  a technique folr simultaneous 

consideration of ayrents and 0ffenoe8, and d g ~ r i $ , h t ~ ~  for analysis of 
tirne-seri.ea e 

m c k  t i pl e ex p n c PI k la1 EI m o  Q t Zr ing t; e c hziq ue w h i G h el im in ate s the need 
for  2 p~ri.oG eetirnatea of the model ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ .  

Included is the ~ ~ v ~ ~ Q ~ ~ ~ i ~ ~ ~  of a modification to the 
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Thus, the task cone is ted  of three interrelated parts which were carried on 
e8 uentiatly in parallel: A determination of the potential applications of CP~XXIE 

prediction, a atudy of the state of the art, and rzn e x e x i a e  ira the real world. 

C, APPROACH 

C r h e  prediction is but one rzpplicatiun in the general pmblem of quartti- 
tative forecasting. Thus, in reviewing khe state of the art, it WBY necensary to 

consider recent advances in forecasting pmced~tres as welt a 
scant literature on crime prediction. 

th relatively 

Potential applications of crime prediction capability we re dete r m i n d  by 
surveying the applicable literature and by consit;.: ring op;:rgtians within the 
LAPD, They were  further explored in  diacuaclonn with officials of the LOB 
Angelta Police Clepartment. 

2 



i 

-1 3 



4 



Selection of tine variables to be predicted- depends u p m  the use to which 
they will be put, 
offenses - with an emphasis on property cri  e3 - was chosen to allow inves- 
tigation. of anticipated crime reduc onB and u n .cnb%r  __I-- df arzests - WZR chosen to 

allow 2riv-e stigation ob anticipated i r ~ p ~ o v e r n e t - d  in police operational effectiveness. 

Hence, for &e e v a l u ~ t i ~ ~  of heliccpter patrols ,  numbeP of 

-- 
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a .  Mnthcta~atical: Reg~.er,si.on (least- Bqimres) I exponential arnooth- 
ing, Fourier  analysis, spectcal a n d y ~ i o ,  moving awerage@, 
and othere.  

physicaf. ~nadcl ing,  znad others. 
Treattnent of outlying points resulting froin unuaual occur- 
rences and/o.t. clerical  errors. 

* 
0. Nonrn~thcmatical: Trial and error, "eyeballingtt, simulation, 

C .  
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-- ___I___ __-l_l______ 

1, Central  Div is ion  

2, Rampart Division 

3 .  V,iiversit.y Division 
4, Hollenbeck Division 

5. Harbor Division 
6 .  Hollywood Division 

7, Wilshire Division 

8. W e s t  Los A n g e l e s  Division 

9. Van Nuys Division 
10. West Valley Division 

11. Highland Park Division 

12. 77th Street Division 
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1 3 ,  ’D:c:wto:i S t ~ e e t  Divisiori 

14. Venice Division 
15. N o r t h  ITolIywood Division 

16. Focthill Divi.sion 

17. Dcvorlshire Division 

18. Area 2 (Divisions 3,  7, 12,  13) 
19. Area 3 (Divisions 1, 2, 4, 6, l l j  
20. Area. 4 (Divisions 9, 10, 15, 16, 17) 

21. Area 5 (Divisicns 5, 8, 14) 
2 2 .  

23.  

24. 

Area 2 less University Division 

Area 4 less W e s t  Valley Division 

Lo6 Angeles City (sum of 1 thru 17) 
- 
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This data  was then used by Program 2 to svaluate 2. s e t  of nzodels. There 

were  54 models in all that  were compared, these being formed through combina- 

tions of the fo l lpwing  (see F i g .  4): 

1) Constant, quadratic, and e:cpon.ential dependence an time. (Time 
was used as a proxy variable for the ufiderlying caufial factozs. ) 

Outlier rejection criteria of 2, 4, 00 standard deviations of the 
(~ulcensared) trial fi t .  

that is, points that might decrease  predicticm accuracy. Such 
points c o d d  be the result of clerical ~ r r ~ i  or izm~sud events, 

such a s  riots. ) 
Multiple regses sion (least  squarec;) and modified muUiple exponential 
smoothing zlgorithnis for determination of modd parameters .  
smoothing constzrrts (0,01, 0.03, 0. 1, 0.3, 0 ,  5) were tried with 

the exponential smoothing algorithm. 

2) 
(The da.ta contains some "cIut?ying" points, 

3) 
Five 

Program 2 applied each of the model-techniqne combinations to the f i r s t  6 years 
of each t ime-series and determined prediction errors during f i e  seventh and 
eighth years of  data. 

These results were then compared with plots of the! t ime-dcsies,  produced 
by Program 3, and models were chosen for the extrapolation into the t e s t  

pcri od. 
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3 Furmctiona Outlier Rejec P a  r m e t e  r G e  ti - - - 
ation Technique x 

tion cr i ter ia  x 
F O ~ ~ e t  
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Time-ser ies  prediction models  use t i m e  as a prexy for the ureklaown 

variables that cause crime Icve3~ to chtcngc. 

variables do not  change wi th  time, theri no variation with t ime would be 

expected. Hence, a constant model was included among the candidates. A 

linear model  accoun t s  for a steady change in crime, while x quadrztic model 
allows a steady change in  that rate of change. 
also show a steady chaage in  crime, and sirice it was desired to keep the mmber 
of functional forms investizated to a tractable number, the l inear model was not 
included as  a candidate, while t he  qtradratie model w a s ,  

niany processes  i s  dependent upon the current state of khat ~ ~ ' Q c ~ s s ~  thus leading 
to exponential behavior with time. 

arnolzg the f ac to rs  causing changes ill  crime !eveis, an exponcntiai model was 

included among the candidates. 
change linearly with time to provide sli2;hkly greater flexibility. Since the 

inode1 was not based on an understanding of the basic phenomena involved, 
it was felt  that additional candidates would be superfluoue. 

If it is a poor proxy, or i f  these 

Since a quadratic model can 

The rate of change of 

To e c c o ~ ~ ~ t ,  for such growth processes 

The growth rate was arbitrarily allowed to 

Seasonal variaticn can be incorporated in a number of ways, the simplest 
If a large of which - the use of additive$ seasonal conatantrjl - was used here. 

hk 
.The cxponcntial model is analyzed as l inear  with time after the dependent 
variable is replaced by its logerithm, 
multiplicstive when the antilog i a  taken. 

Addit ive seasonal constarits become 

14 



C. DATA PROBL,EMS 

A his tory  of the variable to be predicted i s  the only data required for 
prediction by pure e?xtr'apoBr?,tiogt. 

of time, cam be quite extensive, 

24 geographic  ikreas ( s c e  Table 3 and F ig ,  1) csnz2iEtate 648 different time- 

series. Quarterly data f o r  8 yeare provides 32 data points in. each series. 

Whether 33, data points is sdficie 2 for development of a satisfactory prediction 
model depends not ~pl ly  on the use ef the model, but on the dispersion of the 

data itself. 
time, but the S U C E ~ S S  of this task iradicates thzt, for most of the crime types 

This  history, often available for some period 

The 27 crime types (see  Tabla 2) for each of 

The minimum amount of data neeclcd cznnot be predicted ahead of 

treated, the data obtained was sufficient. 

Available crime data suffers from a nwnber of problemrt. Ose of these 
is that reporting criteria may vary conaiherabBy from place to place and time 
to time. As an extreme cxa pller when New ork City introduced centralized 
rccc=rd keeping in 1950, e reportad number of burglaries jumped 1300% over 
the preceding year, 
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slightly different kind oi problem i s  the appropriateness of the data 

type uscd, 

repressive effect on crime, it i s  desirable So deal with numbers of offenses of 
various types of crime., H o w ~ v ~ ~ F ,  a large fraction of crimes committed are 

never reported to the police, Yet the 8 1 ~ s  of "offcnses % ~ - ~ ~ w n  to police" are 

the primary (or only avails-isle) source of hiskorical data,  Changes in any of 
several factors, such a s  p~l ic~: -cornrn~l l l j ty  relations, could conceivably change 
the fraction sigxzificar-tly. 
whether such changes were occurring, predicfions were made for the divisions 

that did not use helicopter patro?s. 

helicopters did indeed perform as predicted**. 

Specifically, in order  to detcct whether hclirssytcr pa t ro l  has a 

To validate the prediction techniques and to detect 

It may be noted that the divisions without 

To determine whether the helicopter patrols contribute directly to the 
effectiveness of police operations, i t  would be desirable to deal with the number 
of offenders caught and the number of crimes solved. Conceivably, court 
C O ~ L V ~ C ~ ~ O A  records could be used, but this ata ~~~~d be difficult to obtain and 

17 



D. D A T A  BASE 

A detailed history of the  600 or 60 police report ing districts w a  obtained 
f r o m  files of L A P D  internal memoranda. 

t ime-ser ies  for police divisions as constituted in 1969 w a s  applied to the 
60, 000 IBM cards containing all crime data quarterly reportrj. 

A eoniputer pragrzm to generate 

The quarterly reports used for this data base were  compiled from 
repor t s  filed on each incident and contained S O ~ B  clerical rnistakea, thus 
placing a l imit  on the possible accuracy for  subsequent predictdonet, 
of illustration, it may be noted that about 2 l / Z %  ob the reportad offense 
a r r e s t s  were attributed to nanexistent'Y'3 reporting districts. 

By way 
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1) The vayiables used in the mmde!. f i n  this case l  t i m e  and sea.scapz) 

a r e  adequate prox ies  f o r  the factors ti~;ft C C ~ ~ P O ?  the -.mderkying 

prccass  and- are modeled in a fv~ct iona l ly  cor rec t  way. 

The process remains stahte, in the 8ense that die "true" values of 
t h e  parameters do not change, 
particular type i s  constant, it must be assumed that that constant 
does not change. 

Variations about the genera]. trend x e u i t  from a multitude of small, 

unmodeled cau~es, independent from one time period t~ the next 
and independent of each other. 

2 )  

Xi'# for example, crime of a 

3) 

There is no reason to believe, however, that any of these aesvmptiona 
are fully satisfied in the C a B e  ot crinrne pr cacc,  it @een-l& likely 

reater emphasis on more recent 
d for which predictionu ore CIJ.1.3-tely, a relatively new 

technique, exponential ernool"hing, dsat: this by giving ~~~~~~~~~~~~y dec reaain 
weight to past data. 
tory control applicationa. 

This tachniqna has ~o~~ promise La marketing end inven- 

I 



F. 

I 

For  some purposcc, predictions can be used directly.  Other applicationpl, 

however,  require that the predictions be processed in sorrie way. 

tion of the effectiveness of a new tactical syntcni is the goal, thc predictions must 

be used aa a b a s i s  of comparison with the cr ime levels that actuzlly occurred. 

%%en evalua- 

To be meaningful, these comparisons must be made statistically. That 

i s ,  the predictions cannot be expected to m-atch the actual$ exaxtly. 

evaluation is  reynired to determine whether the differences sh~\ ,~l ,d  be attributed 
to chancc or  to the new tactical syatern, 

Statistical 

The differences to be expzcted as a rem?.& of chance are  described by the 
standard deviation of the prediction error.  
were  also determined directly?:":<: Once the models were chasen, 4 years  of 
data w e r e  used to predict the fifth year, 5 years to predict the sixth, 6 years to 

predict the seventh, and 7 years  to predict the eighth, 

Estimates of the ~~~~~a~~ deviations 

These 16 quarter8 
- 

cc 
Two years  were u s e d  for the contpariaor: pep.iod in order  to have a larger 
number of data points for thr estiniati,on of the prediction variance. 

That i s ,  they were determined by congidercxkion of the models' predictive 
per-.forrnance, ra ther  than by thc ixsiaal ceotiornctric procedure ~f dealing 
Soicly with e r r o r s  in fitting historical data. 

** 



Treatmeat of offenses and arrests separately is aot necessariry sufficient. 
A reduction in offcrases could be expected to reciuce the. opportunities for 
arrests, (Consider, for example, the extreme of no offenses, 1 Thusl effective- 
ness in reducing offenses could mask-an increase in 

apprehended i f  these related variables arc only corisidered separately, 
Scattei'grerns of arrests v e r s u ~  sfftrrses w e r e  plotted for  several crime types 

e fraction of offenders 

in several. divisions. s ~f . P O ~ T * ~ S  showed the ~~~~~~~~~~ 

correki ion and suggeste e ~ ~ ~ a ~ i ~ ~ ~ ~ ~ ~  may be linear. This correlation 
was used to devise a tefit P5r ~ ~ ~ ~ ~ ~ n i ~ i ~ ~ ~  the statistical significance of offense- 
arrest  vcckors !that is ,  pairs of values). 

Results from several quarters or several crime type8 can be! compared 
by using a t e s t  

offmsc-arrest vectore differ from predicted offense-arrest v~etors .  
t e s t  can be described by the  followin mdogy: If arrow8 shot at a tar 
no c r o s ~ y ~ i n d  present cluster about the ccntcr o the t aqp t ,  then a cluster of 

at c ~ n s i d e r s  the ~~~~~i~~~~ and/or the ~~~~~~~~ by which 
This 
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A ,  THE MATRIX 

It was  noied in  p a y t s  A znd E; of Scr t ion I1 t ha t  51 moc?zI-tec!inique corn-. 

binat ions w e r e  z ~ p l i e d  to tile i ' ir.~t 6 years o f  data f rom e z c h  of t h e  5 4 8  tirile- 

srtrie:; 60 p~oc3tic-t: prediction e r r o r s  for t he  rcrria.ixiing 2 y e a r s  €or which data 

wr~1s avai!a.hI(:. The r ~ s u l t a n f -  35 ? ~ : C I ~ P G I I ~  co rnpa r i scns  arc foo -.vc/!wninouoj to 

publi:;h i n  t h i s  repor t .  

the variation wi th  different  outl ier rejLcticji1 c r i t z  ria+k 2nd  dizferent exponential 

smoothing constznta**, s u g g e ~ t ~  the  nature of  the information used. The body 
of th i s  table concains the Yatio of t he  sjtnndard deviztion of t h e  prediction errors 
during the two years 1967 and 1968 produced by the model-technique combination 

a t  the top  of the column to the s tandard dcvictiuil about a horizontal l i ne  fit by 
least squares through the historical data, 
to r  of the ratio i s  the same for  all model-technique: combinations, so differ- 

ences result ent i re ly  from differences in the prediction accuracy of the model- 

technique combinations. 

"normalized" numbers describing the prediction accuracy which could be 

Table 4, resirictt:d r o  the tc5t divibiorz  a z ~ d  sup2ressing 

For each crime type, the denomina- 

The p t i r p ~ s e  of fo rming  the ratios was to provide 

compared among crime types and arriang divisions more eaaily than the "unnor- 
malized" estimated standard deviations of the prediction errors .  The reader 

i s  referred back to Table 2 for a list of crime types.  

trate how this table can be used, consider total burg la ry  offenses 
in theee two i v i sbne .  The data for t h e w  two time-series i 

plstted in Fig& 6 an 7. Thc s t rong  trend noticeable in both divisions explains 

23 
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Model-technique combinations* cannot be chosen by simply finding the 

smallest numbers  in the matrix. 
Among these are t he  following (not necessarily in order of importance): 

Many other factors must be coneidered. 

1 )  For  each crime type in the several divieiiona, and in each division 

f o r  the aeveral crime typetl, aornewhrrt similar proceseee can be 

expected to be at work. 
tency in both directions unleee there are reasons to choose otker-  
wise. 
A poor fit  by the regression algorithm (for a particular model) 
suggests that the model shape i s  inappropriate, so that a good fit 
with exponential smoothing ~ h o d d  be viewed with skepticism**. 
Similarly, a f i t  tha t  irnprovea drastically as older data ie discounted 
more and more rapidly (that is ,  a 

stant inc r e a ~ e 3 ) ,  also suggegte an inappropriate madel. 

Hence, modela chseexi skao.l.d show coneis- 

2) 

the =pcncneial smoothing con- 

*That is ,  a model (constant, quadratic, exponentid),  an atgorit.hrn (regres- 
sion, cxpont.nti.aL smoothing), 8 ainoothing con3tnn’s (0 .01,  0.03, 0.1,  0.3, 
0. 5), and an ou t t i e r  rejection criterion (no rejection, rejection of point8 
outeidc 2 or 4 rtatzdard deviations). 

the West Valley Biviaion, 
‘+*For exzniple, c r ime type 17 (o ther  arrests), v;ith the exponential model, in 
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data. 

Oc c a s i Q n al.1 y, t: r :7 nd pa .r?~lae: te  'H" e e t im ate 8, s e a B o n z 1 pa a. ame t e r 

estimates, and dakz d u r i n g  the fba! 2 y e a r s  combine in peculiar 
ways to suggest; inappropriate models, 

6 )  

Table 5 shows the final choices of models for each of the 648 time-series,  
Refe r  to Table 2 for and Tzble 4 givea a summary of t h e  frequencies ob choice. 

the l ist  of crime types and Table 3 for the l ist  of divisions. 

It may be observed from Table C that the exponential model wag choeen 
more than half the time, suggeeting khat much of the crime in the city of LOB 

rowing exponentially and that be& r predictions might have been 
opulation had been used as a proxy variable instead of or in addi- 

tion to time. 
ing a portioil of the matrix) that the xporaential smoothin 

more than 4-1 / Z  times as often as the regye 
rithmtl we re equally available. 

It may also be noted (and this was also apparent in Table 4, hshow- 

en both atgo- 

Several general eoncluoiona we re drawn about the selection of m d e l -  
technique combination redicting e rime: 

1 )  Automatic rejection of oratliere i a  very rarely u~seful with the modi- 



Q) 

E 
.d 
k u 



* 
The computer irnplementatian of the exponential smoothing 
algorithm for the quadratic model contained a. programming 
error. Coneeyueafily, th i s  model-technique combination was 
chosen much less often t:i;>u it would have been otherwise. 
11: is probable that most of the quadratic rnod.zl-multiple 
regress ion  technique choices would have betn  displaced if 
the programming error had not been present. 
It is significant to ~ o t e  that the ~ x ~ ~ ~ ~ ~ ~ ~ a l  smoothing tech- 
nique was chosen 4-1 /2  times as often as the regression tech- 
nique with the other two models. 
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C. R E S U L T S  

Quar te r ly  predict ions and ashaciatcc", prediction vnc~ztta;l::l-ie:~ f o r  27 crime 

type:" f a r  24 geographical  a rzas  f o r  1?61 t;rc:~c sbt~ined. 

wikhout hclicopke r~.4 m a t c h 4  the pse6ictions avelil .  * The uncertaixntie~ (magni- 

tudes of one  stap7dard deviat ion) 1rari-d with the  crime type 2nd. sanip'te Eize, 

but were  usual ly  about 15$h ( s e e  Fig.  8).  As wou!d be  expected, unceytainties 

are, in  genera l ,  l a rger  when the expected number is smaller and smaller 

when the expected n u m b e r  is larger. 

Griw:c, in the divisions 

. .  

*That is, a chi-square t es t  o n  the distribution of residuals, measured in stan- 
dard deviations, produced values well within those that would be expected to 
occur at random if drawn from a Gauwaisn distribution, 
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Long range (5  or :!if year) forecasts  could be used by police policy- 

making echelons in plxnning rccruitrnent ea.mpxigns, police academy curriciila, i 
1 force structure,  and eqatprnenf: acquisition, Forecasts would be particularly 

useful in this area if they cfiuld be relied upon to reflect changing trends. 

w 

% 
1 

Policy planners znd operational commanders must kr~ow what alternative 
Task 86 has demonstrated that crime predictions can force s t r u c t u r e s  cazl do. 

be used in conjunction with operational experiments to ass i s t  in the evaluation 
of the effectiveness of certain new and old tactics and equipment. 

4 

‘* 

f 

I 

* 

Tactical commanders can more easily deploy their  forces in an effective 

manner if they know when, where,  and haw much of their forces wil l  be needed. 

Prediction models can help supply this information. 

capability to predict specific crimes might be of the greatest benefit. 
i n  this application, the 

If, a s  anticipated, activities af the police have an influence on the amount 
of crime, then E% tool that would allow police planners to estimate the effect8 of 
a number of alternative possible actions could be of considerable value. 

ent of such a 01 requires a better description of social forces  and 
proceet3es than is current ly  available to a-nalyets, 
P c la t ion B hi p8 
edacatiopaal levels ,  ~~~~~~0~~~~~~ haushg cor~ditions, CPC. ), euch a postulated 
tool woutd ~ o ~ ~ ~ ~ ~ ~ ~ l ~  be uaeful beyond the police system - by l ~ ~ ~ ~ ~ ~ ~ ~ ~ $ ,  social 
workers, city planners, and others. 

In addition, since the 
re prcbably also dependent upon social conditione (such as 

(In this regard, it rAay be noted that the 
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R.  CURRENT A P P L I C A T 1 0 N S  

Corrcspmdi i ig  t o  the brozd. ~per=,i.xw-n of patentiai use& for crime prediction 

methodology, s e v e r a l  rather differext  appr03CheS h a ~ e  b z m  proposed and itre 

uncter study. The next few paragraphs will describe some of these applications 

br ief ly .  It sho i i ld  be noted, howt:ser, that  t h e r e  a re  somc gaps - no quantitative 

researc1.i was uncovered focusing on some of the potential uses. ‘‘ 

Predictions for t i s e  in decisions concerning the tactical deployment of 

police re-sources a r e  concerned more with cal ls  for police service than with 

actual c r ime data. To be useful, such predictic;ns must be concerned with the 

distribution of needs for the police by jurisdiction, by hour of the day, by day 
of the week, and by season. LEMRAS (Law Enf‘orcement Manpower Resource 

Allocation System), which has been in use in several  cit ies and in the Van Nuys 

Division of Los Angeles for about 1 year, produces such predictions by u s e  of 

exponential smoothing techniques, 

Prediction of individual c r imes  requires  a different approach. Conceivably, 

a comprehensive study ob the causes  of cr ime could provide sufficient under- 

standing that such predictions could be made, 

conjunction with the  Franklin Instihxte, has been studying the correlations 

between about three dozen variables and the occurrence of cr ime in o r d e r  to 

identify conditions under which c r ime is  likely. 

A s  a first step, Philadelphia, in 

\k 
In particular,  there appears to be no quantitztive research  relating cr ime to 
controllable social factor 6 .  Changes i n  housing conditions, unemployment ra tes ,  
welfare ru les  o r  c o s t s ,  police deployment policies, and the like a r e  apparently 
not being investigated in terms of t h e i r  quantitative effects on crime. 
restilt, there i s  not enough information to  construct closed-loop control models 
or  long term prediction models. 

As a 
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The determination of effectiveness of new tactical alternatives i s  exern- 

Since this  application i s  discussed throraghout this report, plificd by Task 86. 

it will not be elaborated upon here. 

The scientifically MOS 1; appealing technical approach to c r ime prediction 

is that O€ causal modeling. 

cur ren t  state of the art :  A great deal of research into the forces  interacting 

within aur society rrm*.ist be conducted before such a model will-be feasible. 

good causal model would give insight into the probable effectiveness of various 

Models of this  type a r e  considerably beyond the 

-; A 

possible gross social actions and changes, and is the only hope for reliable 

long t e r m  predictions. 

continue to give more  precise short term predictions. 

But it is  quite possible that extrapolative models would 
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Crir-fic statisxics C ; , Z L ~  1:~: predicte~! \ ~ . ' i i ? ~  suPficient accuracy for ~ ~ r n e  

of the possibl;? ~ p p t i c z  Liens by  rxtrzpo!afion of historical dzta.  

Thc po*iential appli tiCZn.3 of cr.ime prcdirtir>ba metl-todology are 

suiiiciently d iverse  " t h a t  no s i r i g l ~  L ~ c i ~ n i c ~ l  approach  is appropr ia te  

t o  all .  

C u r r e n t  qualitaLivt. zxzd. quantitatiivc understanding of the causes of 
cr ime is  gross ly  insuiclcierat to  permit thc construction of usable 

causal crime prediction models. 

Extrapolative crime rn&:cla rely upon the assumption that treads 
will cont inue as in  the immediate past. 

in public policic s (cspccially, but n ~ t  exclusively, by police 

agencies), in economic o r  social ccnditiuns, or  in public moral 

or philosophical at~fxdes can invalidate this assumption. 

For example, changes:: 

*r- l h a t  is, extraordinary changes in  these factors beyond those that have 
'accurrcd during the period ol: time covered by the data base. 
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A. TYPES OF MODELS 

The f i r s t  consideration of a n y  mode l ing  effort  must be the  uscr.  What 
k i d s  of information will be most useful?  

required? How wil l  i t  be used? How accurate rxust it be'? W h a t  drc the payoffs 
f o r  accu racy  arid the c o s t s  of errors? 

constraints, and computational capabilities ? Will the user need more, better, 
or different information la ter  than he needs now? Questions such as these are 
prerequisite to an  intell igent choice of analytical emphases. 

A r e  some kinds of information 

W h a t  are the users '  data resources, 

A classification of model types follows: 

1 Extrapolative (Time -Series) Models 

Historical data is  simply extrapolated into the immediate future. Sophis - 
tiration can range f rom simple "eyehall" extrapolation of a plot of the historical 

data to complex manipillation dealing with cycles, trends, and sqasoaal 
variations, 

2. Associative Models 

If two objects behave similarly, it is not unreasonable to anticipate that 

of interest can be 
used to predict those phenomena. For example, if the divisions of a city are 
assumed to be alike in  some S E ~ X ,  crime data from Borne divisions could be 
used to predict crime rates in  ather divi 

this similarity extends beyond the data used fo r  the comparison. That is, 
re associated in 
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4. Causa l  Models 

If some o r  xnost of the factors that influence the variable of interest 2nd 

the w a y s  in  wh ich  these inflrtcr,ces x c u r  are either known ~r theorized, causal 

m d e l s  c a n  be constructed to express this knowledge o r  theory, 

that include factors u n d e r  the c o c t r d  of one or mort  of the users  are clearly 
of the greatest  potential valr;e. 

Causal models 

5. Pattern Recognition Models 

hiodels in this category are aimed at isolating the cr imes committed by 
single criminals o r  garigs, and using this information to  identify likely crime 
targets and likely suspects. 

B. VARIABLES A N D  F U N C T I O N A L  RELATIONSHIPS 

With the exception of models designed to test theories, the selection of 
appropriate factors to  be included as irdependent variables and the functional 

forms to be used is a difficult question. 

that the variabler be rzstrict,:d to thoze d.:ta types f o r  which record8 are 
available. 
consideration of plots of the vniabl t .  to bo pi*eclicted against each of the 
candidate factors. 

Resource limitations generally dictate 

Some insight into the choice of functional forms may be gained by 

Considersition of tlic braction sf the variance which is 
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C. 

The f i r d  level on which modeling decisioxi~ mEst he rnsde is the technical 

one of choosing techniques for determining the prediction parameiers. 

techniques were discussed in Section fx: 
There are other techniques, such as moving averages and optimal filtering, 

that might  also be considered. 

be predicted,  arid especially when un-modeled chafiges are known to have occurred, 
consideration sX.iou:d be given to "eyeball" fitting and extrapolation, cocpied with 
the use of experienced judgement. 

Two 

regreasion arid exponexttial smoothing. 

When a mar.ageab1.e number of variables are to 
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The first  step i s  tc consider t h e  relationship between zrrests and offerIses 

for a particrilat. crime t ype  in a pa.rticular division, 

the a;.rest arid offense ti,me-serien in the a-creat-offense plan@ ( s e e  Fig. €3-1, 

This is done by combining 

the details of which will be discussed pre:jent;ly). 

two coordiizates (one from each time-seTies), which may be used to prepare an 
arrest-offense scattergram. 

iepresented by a probability distribution, two contours of which aze shown 
(labeled '!I.u" and 1 1 2 ~ " )  in Fig. €3-1. The corttouz lines shown are  ellipses, a 

Each time point then provides 

The resulting "cloud" of historical points car, be 

coziseq~xetzce of assuming that the appropriate probability distribution is bivariate 
Gaussian, ~,~a~~~~rnatically, the paramsters a% the ellipses are given by 
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1 -1 E! = - tan 
2 

where 

a = semimajor axis of the io ellipse 

b = seml.minoa a x i s  of the ID ellipse 

0 = orientason angle 

p = correlation coeflicicnrt obtained from a simple regression 
and 

of past arrests ofi- past offe, 1 s e s  

= stariciard deviation of ar roa t  forecasts 

= standard deviation of offense forecasts 
ua 
uO 

As812m.ing that the bivariate GalirSsLan distribution is appropriate, t he  10 ellipse 
can bc expected to contain 39% af: tJne data pain.ts, thz 20 ellipse to contain 86'h 
and a 3~ ellipse to qoxtain 93%. Further, dzta poixlpt; are equzlly likely Bo fal l  

into each of the quadrants. 



or 

~ i n d  the smallest integer n such that Pr fk < n I P, N) 2 p 

Since each tri.al is independent (by assumpt ion )  and S a s  a probability P or' 
resulting in R, the probability obeys the Bernoulli distribution law: 

8 

P r  (k = x P, N) = (r) PX(1 - p p - x  

Cons e quently , 

n - 1  

x = o  
P r  ( k < n  I P, N) = (E) PX (1 * P)N-x 

* The following 'lcrosswind" analogy has been suggested: Consider an ideal 
archer shooting along a lcng thin line, 
achally'laads QC the line. 

tically independent, 
the left of the line and half to the right 

not likely, however, that e x a c t .  half will go to each side. Xf ere is a right- 
to-left crosswind, consideyably more  thui half can be expect to go to the 
left  of the line. 
line before the existence of a crosswind has been (statistically) demonstrated? 

Ignore the few times his arrow 
This archer i s  ideal in that his shots are unbiased 

roximz&ely half his sk&s 
he is unbiased). X t  is 

If there i s  no wind 

If he shoots N czrrows, how many must go an o m  side of the 
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where 
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In generai ,  tirne-aerieG Jata exhibit four  components: 

cyclical variation, ~ ~ e a ~ o n a l  variatiori, and irregular f~uctuatiione. The trend 
component i a  probably thhe most familiar; i t g  cx!htznce is i=&ually easily recog- 

nized when the serics is graphed. 

~ e c u l a r  trend, 

This  C O K Y X ~ Q ~ ~ ~ ~  commonly increases with 



A c c m m i o ~  approarlz to t i i - ~ r z - s e ~ ~ i ~ s  ana iya i s  h a s  beeti to model first the 
t rend  by f i t t i ng  a poly i rsmia i  or othes furictiar of tinie to the dat.; and then to 

search fa r  periodic f luctuat ions that: residt f rom scciaoxial c..ncf cyclical influence 
The geasonal effects are often quantified by indices obtained by averaging month- 
ly o r  quarterly valueB of the series, 

jectively through observations of the residual~l after the removal of trend and 
seasonal effects. A sophisticated tpchnique far analyeis of cyclical effects ie 
spectral analyeis, originally developed in research on. telecornmmnication 

terns. This appmach, which has been applied to economic t h e - s e r i e s  (see 

Ref. C- l ) ,  consists basically of the determination, by means c?f the spectrzl 

density function of the 5eriesI of the period and phase ai cycles that account 
for a statiRticd1y significant g ~ r t i o n  of the seri vaiiance. This technique 
has the advantage of verifying the existence of saspecled cycles and even un- 
cove ring cyclic behavior that would &he rwise 

Cyclical effects are often ~~~~~~~~~~ sub- 

o unrecognized. 

A. MULTIPLE R 

1. Preliminaries 

Thq problem to be eolved i 
ticrz) of a m o  el relating one ~~~~~~~~~ variable, ~ ~ n o ~ ~ d  y, to one or 

(and related 

more (K, say] independent variables, denutcd by xk. 
if the only power ally x t a k a  in t h e  model i a  unity. 
more. 
able (such as t h e ) ;  hence, a subscript, t, is added t o  the notation: yt and x 

The model ia  then represented t y  

The re reseion ia  linear 
It fe -- ~~~~~~~~ if K fe 2 or k 

The dependent and independent variabiles all vary with some index vari- 

tk' 
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FurG--r?r, +31e independent variables are 

x = bit for i = 1 to L 
it 

( 1 i f  t corresponds to season i 

(0 otherwise 

= tk for IR = 1 to K *L+k 

For convenience in natation, the various time-series are, defined as 
vectors and matrices: 

Y =  , x =  b etc. 



B = ( X f X ) ' l X i Y  

where the prine ( ' 1  denotes a matrix transpose, and B i s  the vector of estimates 

of the coefficients, Pk* 
is 

A 
Thec, the vector of smoothed values of Y ,  denoted Y,  

A Y = XB 

and the vector oi estimated residuals, E, is estimated by 

A A 
E = Y - Y Y - XB 

(c-4) 

(c-5) 

3. Coefficient of Determinaticn and Muitiple Correlation Coefficient 

2 The coefficient of determination, R , is defined as the ratio of the amount 
ol' variation "explained" by the =.egression to the variatian of the ariginal series 
of the dependent variable: 

I zl, (Yt - YI2 
t =  

54 



4. Statistical lriference 

The esiimated staradapd deviation of the t i t ,  deaoted s, may be found froin 

Eq. (C-7).  

The e stiniated covariance matrix of the coefficient vector, denoted Sbb, 
is given by Eq. ( C - 8 ) .  

5 .  Forecasting 

Suppose a forecast is des i red  at some time t = T ,  and e a t h a t e d  values 
of %he indcpend.ent variables, 2 
variable is eimply 

axe known. Then the borecdst far the dependent r ' 

h = X k B ,  y, 

55 



.. 

where 

(C-11) 

6. Confidence Intervals 

Upper  and lower  1 0 0 ~  percent confidence limits on ;he model parametera 
are  given in Eq. (C- 12). 

(C- 12)  

bb' where Sb is a K x 1 vector of the square roots of the diagonal elements of S 

z is frcm a Student's t d ~ s ~ ~ ~ ~ u ~ ~ ~  of ~~~~~~~~ probability, VP 

p = ( 1  t 'y/2), and 

v = T - K - 2 degrees of freedom 

2 W E  the independent variables are k n ~ t ~ ~  exactly, then 82 is, of coursep aero, 
P 
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A. E X P O N E N T I A L  S M e 7 0 T E U "  



1 .  Prelirninsrie B 

The problem to be solved i a  the estimation cf the coefficients of an nth- 

d e g r e e  polynomial in tinie:" to model  a given discrete time-series. 

Let 

for t = 1 ,  2, . . , T represent the uniformly spaced (input data) 
vslues cf the discrete time- e riee t~ be rnsdeled, 
for any (integral) t represent the-predicted or smoothed valuea of 
the t ime-series ,  

for k = 1, 2, . . . , L arid any t represent additive seaeonal effects 
for each of L 
for t = 1, 2, . oniglly adjugtad time-aerie@, 

Y t  

Yt 

, 

A 

'k 

t X 

0 that 



where 

( C  - 17) 

ar' br are altesna.tive expressions f o r  the coefficients of the poly- 

norriial depending upxi xxrhetlie r tbe po1jmamial. is expanded 

about time 0 or tirrae & respectively, and 

e - t  is thc rcsiduai  (that i c ,  the  dS€ezence between the fit and the 

data) ,  and i s  often assu:xied to be an js,depcndent, Gaussian 
random variable. 

Several of the variables defined above will  be estimated at dibfzrent points in 

time. The fol1awin.g canvrn~nns will  bs eased to  ifidicate such estimates: 

the variable does not already hzvc a subscripted t, a snbscrkpt f, will be added. 
(For  example, b 
t h e  t. 

a circumfbex (or "hat") will be added (as in Tt). 

When 

will represent w3. e~ t im~z te  of r made from data available at 

T J h m  thc v2-x%?ble does al.rcprdy have a svhscripted t { a s  does y t 1, then 
rt 

Often2, the seascmz.9. effects %-nust also be estimated prior to their removal. 
Since 

n 
/ r! r, t-1 b 

(C-18) 



Wit11 t.liese grelirriinaries out of the wzy: it is  possible to proceed to the 

next subsection with the seasonally adjusted time-serjes x far which the poly- t 
nomial cocfficieilts b ~ i i l l  be estimated. rt 

If it i s  d e s i r e d  to study the variations in tlic fitting constants, it may be 
since the i r  values do not nominally vary more convenient t u  deal with the a 

with t. 

nomial of degree less than o r  equal. to n.} The a 

rt' 
(That  i s ,  the a r t  = 2, f o r  all t i f  the data is from a noise-free poly- 

and brt are related by the rt 
following equations: 

(C-20)  

*Cf. Pegela '  models in Ref .  C-4. 

**See also Ref. C-5. 
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S t = a ? i  t t i- f l tSt-1 

( c-2 1) 

. . .  

where Q! is the smoothing constant to be used at time t ,  and is  so defined 

that the ratio of the weights assigned to successive data points 
is ( 1  - a), and the asymptotic value of at is CY, the smoothing 
constant chosen from considerations noit discussed here. 

t 

8, = 1 - Q far convenience, since it occurs often. Similarly, fi = 1 .. 01. t 

Starting with SI = xl' these difference equations can easily be solved for the 

S F '  in t e rms  of the x to provide the following results: t 
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. . .  

t - 1  r 1  
C @  

T 1  = 0 

r 

(C-22) 

From these equations, i t  is evident that the time-varying smoothing constant, 
at, must be given by 

- a  or, equivalently, - %- 1 - at - 1 - flt (C-23) 

If it is now assumed that the observations are taken from 
nomial in time, so'that 

n&-degree poly- . 

$ 

(C-24) b j-1, t 
- 1 2 - ... t - b  1 (-p)" - =' bot - bl tP + n! nt bat P t- P X 
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(C-25) 

b = M " l S  
,t #ut P u t  

(C-26) 

and M is t he  upper left hand corner of 
Nt 

"l l t  m12t 

m21t m22t 

"3 I t  M32t 

"13t 

* 2 h  

"33t 



r.- 

r - l  

i =  1 Ti -1 -  

BT' 

(C-27) 

j - 1  

Comparison of Eqs. (C-25) and (C-27) shows that 

[C-28) 

r-2 r - i  

i= 1 1 
t -1 -  7 .  

1 
t-1-x T i  

1 

i =  I 
= o  t -  =C 7 .  

" *  c 
1 L - 1  

1 - 6  

3. Computational Sequence 

The algorithm for use of modified expon ntial arnoothing i 8 e s s entially the 
saame'as that used by Brown ( R e f .  C-2). 

stcps m a y  be used: 

Explicitly, t he  following sequence of . *  



N Y =  - (r, - 1 )  

- (L 0.. 2) 
e . *  

- 1  

0 

(L - 112 . . * ( - ) " ( e ,  - 
fL - 2)2  a * . [ . y : L  - 
. . . . . . . . .  

1 . . *(-I* 1 

0 e . .  0 

If L 5 {n t I),  then simply f i t  tl ic first n .t 1 points to the 

and F = 
N 

(1 -n 2 n 
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,, " . 

S ,t = L o r n f l  - M  N t - L o r n f l , t = L o r n t l  b 

c )  Next,  i t  i s  necessary to obtain starting values for  the 
seasonal constants. If L > pz -I- 11, the resi55uals during fie 

initia? period can be used, so that 

bot - Y t  f o r q  = 0 

I€, on the other hand, L (n +- l), the polynomial fits the data 
points exactly, sa the next L points may be used to find initial 
values of the seasonal constants. Perhaps a better technique 
is to use ZL or 3L data poi t s  in finding 

d) At completion of the initialization, the s m  
and the seasonal  constant^, c are available as-of some 
time t. 

k' 

2) Step 2: Increment the time index. 

a) Increment t by 1. Find the seaslonally adjusted value of the 
t ime-series  from x Compute the new value. 
of the srnmthing constant, from Eq. (C-23). 
Compute the smoothed series from Eq. (C-21). b) 
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4. 

Step 3: Exit. 

Has the available data been exhausted? If not, return to Step 2. 

and c a rc  liow available for prediction by k If so, the b -t 
Eqs. (C- 15) and (C- 17). rn ax 

I t  can be shown that 

ntl t =  1 

k =  1 

n 

Sn(t, x) 5 k" xk = Sn (a, XI - xttn Dn(t, x) /( 1 - x) 

where Sn(cn, x) = A . xi, and 
j = 1  nJ 

n 
D ( t ,  X) = (1 - x)" t n 

The A are Etslerian numbers and the C .(n) are anofher set of number& given 
n j rJ 

by 



1 f o r j  = I 

- 
* '  *The author i:, indebted to Dr. Harry Lass for discovery of the recursion 

relation f o r  the C .(n). 
rJ 
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These sums can be u s e d  to obtain simpler expressions for  some of the 

elements of the Et matrix given in Eq. (C-28). In particular, with j = 1,  

M = 1 fox dlp rr t rlt 
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Similarly, for  r = 2, j > 1, 

j-1-q 

t-rl q s ( t  - C1' 8) rn 

In addition to the M matrix used in Eq. (C-25) ,  its inverse, M -1  , is 
W t  ,t 

also required, a s  may be seen in Eq. (C-26). 

For exponential smoothing where the data base is assumed to be 
(practically speaking) in€inite, the M matrix is constant*, and is the upper 

left  hand corner of 

~~ ~ 

*See  Brown(Ref.  C-3), p. 135, 
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Inverses of this matrix fcr n = 2 and 3 are  presented here, even though 
computation is trivial, for the convenience of the reader. 

I 1 

.. . 
I 

\ 

The inverses, for ti = 2 and 3, of the mora3 general M Wt matrix are given 

below. The subscripted t haa been omitted for improved readability. 
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then 

12 rn 

" a 2  

32 rn 

rn 13 

=l33  
"23 i 

where 

With modern high-speed computers, camputation of the elements of these 

matrices i s  a simple matter. 
but not upon the time-series data, and meed 
eeries. 

It  ahodd be R d that they de end upon (Y and t, 
be recalculated for each time- 

72 



c.  

c-2 

C - 3  

c-4 

c-5 
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